Abstract
Gedanken experiments in quantum gravity motivate generalised uncertainty relations (GURs) implying deviations from the standard quantum statistics close to the Planck scale. These deviations have been extensively investigated for the non-spin part of the wave function, but existing models tacitly assume that spin states remain unaffected by the quantisation of the background in which the quantum matter propagates. Here, we explore a new model of nonlocal geometry in which the Planck-scale smearing of classical points generates GURs for angular momentum. These, in turn, imply an analogous generalisation of the spin uncertainty relations. The new relations correspond to a novel representation of SU(2) that acts nontrivially on both subspaces of the composite state describing matter-geometry interactions. For single particles, each spin matrix has four independent eigenvectors, corresponding to two 2-fold degenerate eigenvalues ħ±(ħ+β)/2, where β is a small correction to the effective Planck’s constant. These represent the spin states of a quantum particle immersed in a quantum background geometry and the correction by β emerges as a direct result of the interaction terms. In addition to the canonical qubits states, |0⟩=|↑⟩ and |1⟩=|↓⟩, there exist two new eigenstates in which the spin of the particle becomes entangled with the spin sector of the fluctuating spacetime. We explore ways to empirically distinguish the resulting "geometric" qubits, |0′⟩ and |1′⟩, from their canonical counterparts.
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献