Optimal Strategies for Dengue Prevention and Control during Daily Commuting between Two Residential Areas

Author:

Lasluisa Daniel,Barrios Edwin,Vasilieva OlgaORCID

Abstract

: In this paper, we report an application for the mathematical theory of dynamic optimization for design of optimal strategies that account for daily commuting of human residents, aiming to reduce vector-borne infections (dengue) among human populations. Our analysis is based on a two-patch dengue transmission model amended with control variables that represent personal protection measures aimed at reduction of the number of contacts between mosquitoes and human hosts (e.g., the use of repellents, mosquito nets, or insecticide-treated clothing). As a result, we have proposed and numerically solved an optimal control problem to minimize the costs associated with the application of control measures, while also minimizing the total number of dengue-infected people in both residential areas. Our principal goal was to identify an optimal strategy for personal protection that renders the maximal number of averted human infections per unit of invested cost, and this goal has been accomplished on the grounds of cost-effectiveness analysis.

Funder

Universidad del Valle

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3