Calibrating a Hydrological Model in an Ungauged Mountain Basin with the Budyko Framework

Author:

Yu Zexing,Chen XiaohongORCID,Wu JiefengORCID

Abstract

Calibrating spatially distributed hydrological models in ungauged mountain basins is complicated due to the paucity of information and the uncertainty in representing the physical characteristics of a drainage area. In this study, an innovative method is proposed that incorporates the Budyko framework and water balance equation derived water yield (WYLD) in the calibration of the Soil and Water Assessment Tool (SWAT) with a monthly temporal resolution. The impact of vegetation dynamics (i.e., vegetation coverage) on Budyko curve shape parameter ω was considered to improve the Budyko calibration. The proposed approach is applied to the upstream Lancang-Mekong River (UL-MR), which is an ungauged mountain basin and among the world’s most important transboundary rivers. We compared the differences in SWAT model results between the different calibration approaches using percent bias (PBIAS), coefficient of determination (R2), and Nash–Sutcliffe efficiency (NSE) coefficient. The results demonstrated that the Budyko calibration approach exhibited a significant improvement against an unfitted priori parameter run (the non-calibration case) though it did not perform as good as fitting of the calibration by the observed streamflow. The NSE value increased by 44.59% (from 0.46 to 0.83), the R2 value increased by 2.30% (from 0.87 to 0.89) and the PBIAS value decreased by 55.67% (from 39.7 to 17.6) during the validation period at the drainage outlet (Changdu) station. The outcomes of the analysis confirm the potential of the proposed Budyko calibration approach for runoff predictions in ungauged mountain basins.

Funder

Natural Science Foundation of Jiangsu Province, China

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3