Exploring Trade-Offs between Potential Economic, Social and Environmental Outcomes of Urban Agriculture in Adelaide, Australia and the Kathmandu Valley, Nepal

Author:

Kafle Arun1ORCID,Hopeward James1ORCID,Myers Baden1ORCID

Affiliation:

1. Sustainable Infrastructure and Resource Management (SIRM), UniSA STEM, University of South Australia, Mawson Lakes Campus, Mawson Lakes, SA 5095, Australia

Abstract

Urban Agriculture (UA) is widely presented as a feature of sustainable cities, with various claims around economic, social, and/or environmental benefits. However, the extent to which these different benefits may reinforce or compete with one another is not clear. This paper presents an integrated modelling framework using proxy measures for economic benefit (the net margin, NM), social benefit (the full-time farmer employment equivalent (FTE) per consumer) and environmental benefit (reduction in carbon dioxide emissions, CO2). The model is applied in two divergent development scenarios, including Adelaide, Australia, and the Kathmandu Valley, Nepal, to study the characteristic features of UA in different settings. Two-stage optimisation is used to explore trade-offs and synergies when pursuing different objectives (NM, FTE and CO2). The model seeks the optimal farming area and selects from three levels of mechanisation (non-mechanised, garden tiller and garden cultivator), two purposes (gardening and commercial), two crop value categories (mixed and mid- to high-value vegetables) and two market mechanisms (wholesale vs. retail). The results of the optimisation provide insights into the key features of a UA system depending on the objective(s) being pursued, which we believe is a novel approach to justify UA research. For instance, the model favours a commercial UA form (in which both land and labour are costed) with a larger area when pursuing an economic objective, whereas it favours a gardening form of UA when aiming to maximise participation in the food system, with the preferred area depending on the extent to which either the economic or environmental objective is also being pursued. In Adelaide, the model favours commercial UA for the best-case profit and carbon emissions, and gardening for FTE maximisation. In the Kathmandu Valley, the model chooses the gardening UA within the given model assumptions.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3