Investigations on the Diesel Spray Characteristic and Tip Penetration Model of Multi-Hole Injector with Micro-Hole under Ultra-High Injection Pressure

Author:

Zhai Chang1ORCID,Chang Feixiang2,Jin Yu3ORCID,Luo Hongliang4

Affiliation:

1. Renewable Energy Research Center, National Institute of Advanced Industrial Science and Technology (AIST), 1-2-1 Namiki, Tsukuba 305-8564, Ibaraki, Japan

2. School of Mechanical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212100, China

3. Institute for Energy Research, Jiangsu University, Zhenjiang 212013, China

4. College of Power and Energy Engineering, Harbin Engineering University, Harbin 150001, China

Abstract

Increasing the injection pressure has a significant impact on atomization and combustion characteristics. Spray tip penetration serves as a vital parameter for fuel injection control and engine structure design. However, a reliable spray tip penetration model for ultra-high-pressure injection is currently lacking. To address this gap, this study establishes a theoretical 0-dimensional model for spray tip penetration under ultra-high pressure (300 MPa) conditions. The model is based on the conservation of momentum and phenomenological models. The new model divides spray tip penetration into two stages: Pre-breakup and post-breakup, with fuel injection rate and spray cone angle used as model inputs. To validate the model, high-speed camera observations and constant-volume chamber experiments are conducted to investigate the spray characteristics. The results indicate that the new spray tip penetration model demonstrates improved predictive accuracy across all experimental conditions.

Funder

Foundation of State Key Laboratory of Engines

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3