An Optimization Design for the Resource Utilization of Grape Branches Based on the Orthogonal Test and Gray Relational Analysis Method

Author:

Yang Minghao123,Zhang Yican123,Wang Xiaodi123,Wang Zhiqiang123,Li Peng123,Shi Xiangbin123,Wang Xiaolong123,Wang Baoliang123,Li Yumei123,Ma Yuquan123,Liu Fengzhi123,Wang Haibo123

Affiliation:

1. Research Institute of Pomology, Chinese Academy of Agricultural Sciences, Xingcheng 125100, China

2. Key Laboratory of Horticultural Crops Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs of the People’s Republic of China, Xingcheng 125100, China

3. Key Laboratory of Mineral Nutrition and Fertilizers Efficient Utilization of Deciduous Fruit Tree, Xingcheng 125100, China

Abstract

Composting is an environment-friendly and sustainable way to transform grape branches (GBs) into a useful product. Different parameters can differently affect fertilizer quality. Here, the compost product nutrient content was evaluated using an L9 orthogonal array (parameters, nitrogen source: chicken manure, sheep manure, urea; stirring temperature: 50, 60, 70 °C; initial pH: 6, 7, 8; conditioning agent: calcium superphosphate, zeolite, and copper sulfate). Among the treatments, the T3 (chicken manure, 70 °C, pH = 8, copper sulfate), T2 (chicken manure, 60 °C, pH = 7, zeolite), and T9 (urea, 70 °C, pH = 7, calcium superphosphate) had high gray relational grades (0.7424, 0.7132, 0.7110, respectively). The nitrogen source type (R = 0.1140) had the greatest influence on the nutrient content of the final product, followed by the stirring temperature (R = 0.1104), the conditioning agent (R = 0.0522), and the initial pH (R = 0.0408). Finally, the best nitrogen source of the grape branch compost was chicken manure, the best stirring temperature was 70 °C, the best initial pH was 7, and the best conditioning agent was zeolite. An experimental verification showed that the weighted correlation degree of the optimal treatment predicted by the orthogonal experiment increased by 3.63%.

Funder

earmarked fund for the China Agriculture Research System

the Agricultural Science and Technology Innovation Program, Chinese Academy of Agricultural Sciences

the National Key Research and Development Program of China

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3