Scientometric Analysis of Global Research on the Utilization of Geopolymer Composites in Construction Applications

Author:

Hwalla Joud1ORCID,Bawab Jad1ORCID,El-Hassan Hilal1ORCID,Abu Obaida Feras1ORCID,El-Maaddawy Tamer1ORCID

Affiliation:

1. Department of Civil and Environmental Engineering, College of Engineering, Al Ain Campus, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates

Abstract

This study conducts a scientometric review on the use of geopolymer mortar and composites in different construction applications. It aims to analyze the findings of past research and reveal the research constituents, development trends, and knowledge gaps. The Scopus database was employed to retrieve the relevant publications, while Bibliometrix was used to conduct the statistical analyses. Results revealed a steady and gradual increase in the number of publications after 2013, as the annual growth rate increased from 23.9% to 45.2% between the timeframes 2003–2013 and 2014–2022, respectively. The analysis highlighted that many authors collaborated on different construction applications of geopolymers regardless of geographic location. Meanwhile, Construction and Building Materials, China, and Universiti Malaysia Perlis were found to be the predominant journal, country, and institution, respectively. The scientometric analysis showed that the most frequently investigated applications for geopolymer mortars and composites were fire resistance, corrosion protection, and repair. Research gaps highlighted that other applications are not as well investigated despite the promising performance of the geopolymer composites, including 3D printing, heavy metals absorption, environmental protection, and underwater applications. Future research is required to assess the use of other alumina and silica-rich binders in geopolymers while also exploring their lifecycle assessment and economic impact.

Funder

United Arab Emirates University

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3