A New Combined Prediction Model for Ultra-Short-Term Wind Power Based on Variational Mode Decomposition and Gradient Boosting Regression Tree

Author:

Xing Feng1,Song Xiaoyu1,Wang Yubo1,Qin Caiyan2

Affiliation:

1. School of Electrical Engineering, Liaoning University of Technology, Jinzhou 121001, China

2. School of Mechanical Engineering and Automation, Harbin Institute of Technology, Shenzhen 518055, China

Abstract

Wind power is an essential component of renewable energy. It enables the conservation of conventional energy sources such as coal and oil while reducing greenhouse gas emissions. To address the stochastic and intermittent nature of ultra-short-term wind power, a combined prediction model based on variational mode decomposition (VMD) and gradient boosting regression tree (GBRT) is proposed. Firstly, VMD is utilized to decompose the original wind power signal into three meaningful components: the long-term component, the short-term component, and the randomness component. Secondly, based on the characteristics of these three components, a support vector machine (SVM) is selected to predict the long-term and short-term components, while gated recurrent unit-long short-term memory (GRU-LSTM) is employed to predict the randomness component. Particle swarm optimization (PSO) is utilized to optimize the structural parameters of the SVM and GRU-LSTM combination for enhanced prediction accuracy. Additionally, a GBRT model is employed to predict the residuals. Finally, the rolling predicted values of the three components and residuals are aggregated. A deep learning framework using TensorFlow 2.0 has been built on the Python platform, and a dataset measured from a wind farm has been utilized for learning and prediction. The comparative analysis reveals that the proposed model exhibits superior short-term wind power prediction performance, with a mean squared error, mean absolute error, and coefficient of determination of 0.0244, 0.1185, and 0.9821, respectively.

Funder

Scientific Research Funding Project of Liaoning Provincial Department of Education

Shanghai Sailing Program

Stable Funding Support for Universities in Shenzhen

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3