Maximizing Annual Energy Yield in a Grid-Connected PV Solar Power Plant: Analysis of Seasonal Tilt Angle and Solar Tracking Strategies

Author:

Zaheb Hameedullah12ORCID,Amiry Habibullah3,Ahmadi Mikaeel14ORCID,Fedayi Habibullah1,Amiry Sajida2,Yona Atsushi1

Affiliation:

1. Department of Electrical and Electronics Engineering, Faculty of Engineering, University of the Ryukyus, 1 Senbaru, Okinawa 903-0213, Japan

2. Department of Energy Engineering, Faculty of Engineering, Kabul University, Kabul 1006, Afghanistan

3. Renewable Energy and Energy Efficiency Department, Da Afghanistan Breshna Sherkat (DABS), Kabul 1009, Afghanistan

4. Research Promotion Unit, Co-Creation Management Department, University of the Ryukyus, Okinawa 903-0213, Japan

Abstract

Harnessing the abundant solar resources holds great potential for sustainable energy generation. This research paper delves into a comprehensive analysis of seasonal tilt and solar tracking strategy scenarios for a 15 MW grid-connected PV solar power plant situated in Kandahar province, Afghanistan. The study investigates the impact of fixed tilt, seasonal tilt, SAHST (single-axis horizontal solar tracking), and SAVST (single-axis vertical solar tracking) on energy yield, considering technical, economic, and environmental aspects. In the first scenario, a fixed tilt angle of 31 degrees was employed. The second scenario explored the use of seasonal tilt angles, with a summer tilt angle of 15 degrees and a winter tilt angle of 30 degrees. The third scenario analyzed SAHST. Finally, the fourth scenario focused on implementing SAVST. SAVST proved to be an exceptional solution, showcasing a remarkable increase in annual energy yield, and generating an additional 6680 MWh/year, 6336 MWh/year, and 5084 MWh/year compared to fixed, seasonal, and SAHST scenarios, respectively. As a result, surplus energy yielded an income of USD 554,440.00 per year compared to fixed tilt. However, the investment cost for the solar tracking system amounted to USD 1,451,932, accompanied by an annual operation and maintenance cost of 0.007 USD/W/year. The analysis revealed a promising payback period of 3 years, confirming the economic feasibility of this investment. The findings underscore the effectiveness of different strategies for optimizing solar power generation in the Kandahar region. Notably, the installation of SAVST emerged as an influential solution, significantly increasing power production. These research outcomes bear practical implications for solar tracking strategies for addressing the load challenges faced by Kandahar province and offer valuable insights for the operators and operation of solar power plants in similar regions.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3