Assessing Impacts of Mining-Induced Land Use Changes on Groundwater and Surface Water Quality Using Isotopic and Hydrogeochemical Signatures

Author:

Kausher Rukaiya1,Singh Rambabu2,Sinha Anand Kumar1ORCID,Sethy Satya Narayan3ORCID,Kumar Sudhir4ORCID,Pandey Shatrudhan5ORCID,Ragab Adham E.6ORCID,Mohamed Ahmed7ORCID

Affiliation:

1. Department of Civil and Environmental Engineering, Birla Institute of Technology, Mesra, Ranchi 835215, India

2. Central Mine Planning and Design Institute Limited, Bilaspur 495006, India

3. Geological Survey of India, Eastern Region, DK-6, Salt Lake, Kolkata 700091, India

4. Hydrological Investigations Division, National Institute of Hydrology, Roorkee 247667, India

5. Department of Production and Industrial Engineering, Birla Institute of Technology, Mesra, Ranchi 835215, India

6. Department of Industrial Engineering, College of Engineering, King Saud University, P.O. Box 800, Riyadh 11421, Saudi Arabia

7. Department of Structural Engineering and Construction Management, Future University, New Cairo City 11835, Egypt

Abstract

The current investigation aimed to assess the impact of land use changes on groundwater quality because of the extensive mining activities in the coal mining province of the Mahan River catchment area, which is located in the Surguja district of Chhattisgarh, India. The water quality index (WQI), Collin’s ratio, stable isotope ratios of water molecules (δ18O and δD), and various physicochemical parameters were measured to determine the suitability of water for domestic purposes. Water samples collected from dug wells, tube wells, river water, and mine water were analyzed, and the results revealed that 28% of the samples were classified as excellent and 44%were classified as good during the pre-monsoon period. In the post-monsoon period, 50% of the samples were categorized as good, while 35% were classified as poor, whereas in mining areas, 54% of samples were found to be unsuitable during the pre-monsoon period, and this increased to 77% in the post-monsoon period. Stable isotope analysis was also conducted: samples were plotted to the right of the Local Meteoric Water Line (LMWL) in the isotope bivariate plot, and the observed slopes for all samples were smaller than that of the LMWL. The enrichment of the δ18O ratio and negative d-excess values at certain locations suggest the occurrence of non-equilibrium processes and mixing mechanisms.

Funder

King Saud University

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3