The Evaluation of Snow Depth Simulated by Different Land Surface Models in China Based on Station Observations

Author:

Sun Shuai12ORCID,Shi Chunxiang2,Liang Xiao2,Zhang Shuai3,Gu Junxia2,Han Shuai2ORCID,Jiang Hui2,Xu Bin2ORCID,Yu Qingbo4,Liang Yujing2,Deng Shuai2

Affiliation:

1. Key Laboratory of Coupling Process and Effect of Natural Resources Elements, Beijing 100055, China

2. National Meteorological Information Center, Beijing 100081, China

3. Institute of Urban Meteorology of Beijing, Beijing 100089, China

4. Meteorological Information and Network Center of Jilin Province, Changchun 130062, China

Abstract

Snow plays an important role in catastrophic weather, climate change, and water recycling. In order to analyze the ability of different land surface models to simulate snow depth in China, we used atmospheric forcing data from the China Meteorological Administration (CMA) Land Data Assimilation System (CLDAS) to drive the CLM3.5 (the Community Land Model version 3.5), Noah (NCEP, OSU, Air Force and Office of Hydrology Land Surface Model), and Noah-MP (the community Noah land surface model with multi-parameterization options) land surface models. We also used 2380 daily snow-depth site observations of CMA to analyze the simulation effects of different models on the snow depth in China and different regions during the periods of snow accumulation and snowmelt from 2015 to 2019. The results show that CLM3.5, Noah, and Noah-MP can simulate the spatial distribution of the snow depth in China, but there are some differences between the models. In particular, the snow depth and snow cover simulated by CLM3.5 are lower than those simulated by Noah and Noah-MP in Northwest China and the Tibetan Plateau. From the overall quantitative assessment results for China, the snow depth simulated by CLM3.5 is underestimated, while that simulated by Noah is overestimated. Noah-MP has the best overall performance; for example, the biases of the three models during the snow-accumulation periods are −0.22 cm, 0.27 cm, and 0.15 cm, respectively. Furthermore, the three models perform differently in the three snowpack regions of Northeast China, Northwest China, and the Tibetan Plateau; Noah-MP has the best snow-depth performance in Northeast China, while CLM3.5 has the best snow-depth performance in the Tibetan Plateau region. Noah-MP performs best in the snow-accumulation period, and Noah performs best in the snowmelt period for Northwest China. In conclusion, no single model can perform optimally for snow simulations in different regions of China and at different times of the year, and the multi-model integration of snow may be an effective way to obtain high-quality snow simulation results. So this study provides some scientific references for the spatiotemporal evolution of snow in the context of climate change, monitoring and analysis of snow, the study of land surface models for snow, and the sustainable development and utilization of snow resources in China and other regions.

Funder

Open Foundation of the Key Laboratory of Coupling Process and Effect of Natural Resources Elements

Youth Science and Technology Foundation of National Meteorological Information Center

National Meteorological Information Center balance project

satellite application advance plan of Feng-Yun

National Science Foundation of China

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3