Improvement of Higher Heating Value and Hygroscopicity Reduction of Torrefied Rice Husk by Torrefaction and Circulating Gas in the System

Author:

Wongsiriwittaya Montree1,Chompookham Teerapat1,Bubphachot Bopit1ORCID

Affiliation:

1. Heat Pipe and Thermal Tools Design Research Unit (HTDR), Department of Mechanical Engineering, Faculty of Engineering, Mahasarakham University, Khamriang, Kantarawichai 44150, Maha Sarakham, Thailand

Abstract

This study aimed to enhance the thermal characteristics of rice husk biomass through torrefaction conducted in a fixed-bed reactor. A novel approach was employed by circulating the gas produced within the system, instead of using traditional nitrogen. The torrefaction process took place at temperatures ranging from 200 to 320 °C, with different residence times of 10, 20, and 30 min for heat exchange. Quantitative analysis of the torrefied biomass revealed several notable improvements. The higher heating value of the biomass increased significantly, reaching 23.69 MJ/kg at a temperature of 320 °C and a residence time of 30 min. This enhancement indicates the effectiveness of torrefaction in increasing the energy content of the biomass. Furthermore, the torrefied biomass exhibited a remarkable reduction in hygroscopicity, with reduction by as much as 92 wt% compared to raw rice husk biomass. This reduction implies that the torrefied biomass is more resistant to moisture absorption, making it more stable and suitable for various applications. The torrefaction process in the fixed-bed reactor yielded a torrefied biomass with a production yield of 76 wt% (RH-320, RT30). This yield showcases the potential of the employed technique for producing a substantial amount of high-quality torrefied biomass. The resulting biomass holds great promise for diverse applications. It can be utilized for industrial steam production, contributing to the efficient use of biomass resources. Moreover, it could serve as an alternative fuel source for biomass power plants, offering a sustainable energy solution. Overall, this study demonstrates the effectiveness of the proposed torrefaction method in enhancing the thermal characteristics of rice husk biomass. The improved energy content and reduced hygroscopicity make torrefied biomass a valuable resource for various industries, promoting the utilization of biomass as a renewable energy source.

Funder

Mahasarakham University

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3