Increasing Output Power of a Microfluidic Fuel Cell Using Fuzzy Modeling and Jellyfish Search Optimization

Author:

Alhumade Hesham123ORCID,Moujdin Iqbal Ahmed12ORCID,Al-Shahrani Saad1

Affiliation:

1. Chemical and Materials Engineering Department, Faculty of Engineering, King Abdulaziz University, Jeddah 21589, Saudi Arabia

2. Center of Excellence in Desalination Technology, King Abdulaziz University, Jeddah 21589, Saudi Arabia

3. K. A. CARE Energy Research and Innovation Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia

Abstract

An efficient electrochemical energy conversion system with little to no environmental impact is the fuel cell (FC). FCs have demonstrated encouraging results in various applications and can even run on biofuel, such as bio-glycerol, a by-product of biodiesel. The most effective ways to operate FCs can significantly enhance their effectiveness. Incorporating fuzzy modeling and metaheuristic methods, this work used artificial intelligence to determine the ideal operating parameters for a microfluidic fuel cell (MFC). The concentrations of the following four variables were considered: bio-glycerol concentration, anode electrocatalyst loading, anode electrolyte concentration, and cathode electrolyte concentration. The output power density of the MFC was used to assess its performance. The output power density of the MFC was modeled using fuzzy logic, taking into account the aforementioned operational parameters. A jellyfish search optimizer (JSO) was then used to find the ideal operating conditions. The results were contrasted with response surface methodology (RSM) and experimental datasets to demonstrate the superiority of the proposed integration between fuzzy modeling and the JSO. In comparison with the measured and RSM approaches, the suggested strategy boosted the power density of the MFC by 9.38% and 8.6%, respectively.

Funder

Deputyship for Research & Innovation, Ministry of Education in Saudi Arabia

King Abdulaziz University, DSR, Jeddah, Saudi Arabia

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3