Proton Exchange Membrane Fuel Cell Power Prediction Based on Ridge Regression and Convolutional Neural Network Data-Driven Model

Author:

Yang Jinrong1,Wu Yichun1ORCID,Liu Xingyang2

Affiliation:

1. College of Energy, Xiamen University, Xiamen 361005, China

2. College of Materials Sciences & Engineering, Huaqiao University, Xiamen 362021, China

Abstract

Research on the power prediction of proton exchange membrane fuel cells (PEMFCs) has garnered considerable attention. Because mainstream computational-fluid-dynamics-based methods are time-consuming, this study aimed to design a data-driven method based on Ridge regression (Ridge) and convolutional neural network (CNN) algorithms that can efficiently predict PEMFC power under uncertain conditions in real-world scenarios and reduce the time consumption. The measured data from a PEMFC test bench (3 kW) were collected as the data source for the model. First, we adopted Ridge to eliminate abnormal samples. Second, we analyzed and selected the variables that have a significant effect on PEMFC power. Moreover, we optimized the model using batch normalization, dropout, Nadam, Swish, and Huber techniques. Finally, the performance of the model was evaluated by combining real datasets and real polarization curves. The experimental results demonstrate that the polarization curves predicted by the CNN-based model agree with the real curves, with a prediction accuracy of approximately 0.96, a prediction time of 1 μs, and an iteration period of less than 1 s per cycle. A comparative analysis shows that the CNN-based model prediction precision was superior to that of other mainstream machine learning algorithms. In real scenarios, the CNN-based model accurately predicts the power of PEMFC.

Funder

the Science and Technology Project of Fujian Province

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3