Predicting Carbon Storage Jointly by Foliage and Soil Parameters in Pinus pumila Stands along an Elevation Gradient in Great Khingan

Author:

Zhao Rongjian1,Li Jinxia234,Liu Shuhua24,Zhang Jun5,Duan Yadong24ORCID

Affiliation:

1. Harbin Jizhi Agricultural Technology Development Co., Ltd., Harbin 150081, China

2. Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, China

3. College of Landscape Architecture, Northeast Forestry University, Harbin 150040, China

4. Huma Cold Temperate Zone Experimental Station of Conservation and Utilization of Wild Plant Germplasm Resources, Huma 165100, China

5. Science and Technology Innovation Department of Daxing’anling Forestry Group Company, Jiagedaqi 165300, China

Abstract

Alpine dwarf pine populations are dwelling in a climate-sensitive habitat, where detection of the carbon (C) cycle is still valued for sustainability. Foliar and soil parameters are key factors that combine to jointly affect aboveground C storage in alpine ecosystems, but how they generate combined contributions to aboveground C in alp dwellers still needs more research. In this study, Pinus pumila, a typical alp dwarf pine species in a canyon of the Great Khingan Mountain, was focused on. Their natural populations were investigated for individual growth and needle and soil parameters in plots across six categorized elevations from 800 m to 1200 m. Aboveground C storage was estimated by three allometric models which were all found to increase against increases in elevation. Along the increasing elevational gradient, needle concentrations of nitrogen (N) and phosphorus (P) both showed decreasing trends, but activities of N and P assimilation enzymes and chlorophyl contents, as well as the soil contents of ammonium N and organic matter, all showed increasing trends. Multiple linear regression models indicated that elevation (parameter estimate, PE: +0.01), needle P (PE: +0.66) and chlorophyl contents (PE: +0.60) made jointly positive contributions to estimated C storage while soil pH had a negative contribution (PE: −1.80). For the purpose of sustainable C fixation by alp P. pumila populations, strategies should be considered to increase P availability and control high soil pH. Our results fill the gap about C storage and driving forces in alpine ecosystems, and their applications are not limited to being referenced by other alpine plants.

Funder

Ministry of Science and Technology of the People’s Republic of China

Science and Technology Innovation and Development Center, Chinese Academy of Sciences

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3