Multiresponse Performance Evaluation and Life Cycle Assessment for the Optimal Elimination of Pb (II) from Industrial Wastewater by Adsorption Using Vine Shoot Activated Carbon

Author:

Sabando-Fraile Celia1ORCID,Corral-Bobadilla Marina1ORCID,Lostado-Lorza Rubén1ORCID,Somovilla-Gomez Fátima1

Affiliation:

1. Department of Mechanical Engineering, University of La Rioja, 26004 Logroño, Spain

Abstract

Excess Pb (II) concentrations in wastewater have raised concerns of a risk to health and the environment due to their toxicity. This has contributed to the need for sustainable technology to remove heavy metals from wastewater. Biosorption provides a potential contribution to a solution. This study proposes a cost-effective method to remove lead ions from wastewater through the use of activated carbon from vine shoots as a biosorbent. However, economic cost and environmental impact are aspects that are necessary to study. This research suggests the use of a life cycle assessment and multiresponse surface method with desirability functions to improve and optimize the biosorption process. The experiments were conducted using a Box–Behnken design of experiments (BBD) combined with the multiresponse surface method. Three input variables were considered. They are initial lead concentration, pH, and the amount of activated carbon from vine shoots. These are the most significant adsorption process variables. The final lead concentration was considered as a process output variable. Human toxicity, global warming, abiotic depletion (fossil fuel), marine aquatic ecotoxicity, and freshwater ecotoxicity were regarded as process environmental impacts. Four optimization scenarios were proposed using these methods. The maximum removal of lead was 92.12%, whereas 92.09% of lead was removed when the minimum dose of vine shoot activated carbon was used. In contrast, 52.62% of lead was removed in the case of minimal environmental impact.

Funder

Government of La Rioja project

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3