A Mixed Reality Design System for Interior Renovation: Inpainting with 360-Degree Live Streaming and Generative Adversarial Networks after Removal

Author:

Zhu Yuehan1,Fukuda Tomohiro1ORCID,Yabuki Nobuyoshi1ORCID

Affiliation:

1. Division of Sustainable Energy and Environmental Engineering, Osaka University, 2-1 Yamadaoka, Suita-shi, Osaka 565-0871, Japan

Abstract

In contemporary society, “Indoor Generation” is becoming increasingly prevalent, and spending long periods of time indoors affects well-being. Therefore, it is essential to research biophilic indoor environments and their impact on occupants. When it comes to existing building stocks, which hold significant social, economic, and environmental value, renovation should be considered before new construction. Providing swift feedback in the early stages of renovation can help stakeholders achieve consensus. Additionally, understanding proposed plans can greatly enhance the design of indoor environments. This paper presents a real-time system for architectural designers and stakeholders that integrates mixed reality (MR), diminished reality (DR), and generative adversarial networks (GANs). The system enables the generation of interior renovation drawings based on user preferences and designer styles via GANs. The system’s seamless integration of MR, DR, and GANs provides a unique and innovative approach to interior renovation design. MR and DR technologies then transform these 2D drawings into immersive experiences that help stakeholders evaluate and understand renovation proposals. In addition, we assess the quality of GAN-generated images using full-reference image quality assessment (FR-IQA) methods. The evaluation results indicate that most images demonstrate moderate quality. Almost all objects in the GAN-generated images can be identified by their names and purposes without any ambiguity or confusion. This demonstrates the system’s effectiveness in producing viable renovation visualizations. This research emphasizes the system’s role in enhancing feedback efficiency during renovation design, enabling stakeholders to fully evaluate and understand proposed renovations.

Funder

JSPS KAKENHI

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3