Detecting Photovoltaic Panels in Aerial Images by Means of Characterising Colours

Author:

Marletta Daniele1ORCID,Midolo Alessandro1ORCID,Tramontana Emiliano1ORCID

Affiliation:

1. Dipartimento di Matematica e Informatica, University of Catania, 95125 Catania, Italy

Abstract

The detection of photovoltaic panels from images is an important field, as it leverages the possibility of forecasting and planning green energy production by assessing the level of energy autonomy for communities. Many existing approaches for detecting photovoltaic panels are based on machine learning; however, they require large annotated datasets and extensive training, and the results are not always accurate or explainable. This paper proposes an automatic approach that can detect photovoltaic panels conforming to a properly formed significant range of colours extracted according to the given conditions of light exposure in the analysed images. The significant range of colours was automatically formed from an annotated dataset of images, and consisted of the most frequent panel colours differing from the colours of surrounding parts. Such colours were then used to detect panels in other images by analysing panel colours and reckoning the pixel density and comparable levels of light. The results produced by our approach were more precise than others in the previous literature, as our tool accurately reveals the contours of panels notwithstanding their shape or the colours of surrounding objects and the environment.

Publisher

MDPI AG

Subject

Computer Science (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3