Use of a Residual Neural Network to Demonstrate Feasibility of Ship Detection Based on Synthetic Aperture Radar Raw Data

Author:

Cascelli Giorgio1,Guaragnella Cataldo2ORCID,Nutricato Raffaele1,Tijani Khalid1,Morea Alberto1,Ricciardi Nicolò1,Nitti Davide Oscar1ORCID

Affiliation:

1. Geophysical Applications Processing G.A.P. s.r.l., 70126 Bari, Italy

2. Department of Electrics and Information Engineering, Politecnico di Bari, 70126 Bari, Italy

Abstract

Synthetic Aperture Radar (SAR) is a well-established 2D imaging technique employed as a consolidated practice in several oil spill monitoring services. In this scenario, onboard detection undoubtedly represents an interesting solution to reduce the latency of these services, also enabling transmission to the ground segment of alert signals with a notable reduction in the required downlink bandwidth. However, the reduced computational capabilities available onboard require alternative approaches with respect to the standard processing flows. In this work, we propose a feasibility study of oil spill detection applied directly to raw data, which is a solution not sufficiently addressed in the literature that has the advantage of not requiring the execution of the focusing step. The study is concentrated only on the accuracy of detection, while computational cost analysis is not within the scope of this work. More specifically, we propose a complete framework based on the use of a Residual Neural Network (ResNet), including a simple and automatic simulation method for generating the training data set. The final tests with ERS real data demonstrate the feasibility of the proposed approach showing that the trained ResNet correctly detects ships with a Signal-to-Clutter Ratio (SCR) > 10.3 dB.

Funder

Italian Space Agency

Codice Unico di Progetto

Publisher

MDPI AG

Subject

Computer Science (miscellaneous)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Lightweight Ship Detection Network for SAR Range-Compressed Domain;Remote Sensing;2024-09-04

2. Ship Detection From Raw SAR Echoes Using Convolutional Neural Networks;IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3