Electrospun PVP/TiO2 Nanofibers for Filtration and Possible Protection from Various Viruses like COVID-19

Author:

Sharma AnkushORCID,Pathak Dinesh,Patil Deepak S.ORCID,Dhiman Naresh,Bhullar Viplove,Mahajan Aman

Abstract

In this study, TiO2 nanofibers were prepared with Polyvinylpyrrolidone (PVP) polymer using sol-gel method via electrospinning technique. Owing to the advantages of small fiber diameter, tunable porosity, low cost, large surface to volume ratio, structure control, light-weight, and less energy consumption, electrospun nanofibers are evolving as an adaptable material with a number of applications, in this case for filtration and environmental/virus protection. Different samples of TiO2/PVP nanofibers have been prepared by changing the parameters to achieve the best result. As the polymer concentration was increased from 6 to 8 wt.% of PVP, diameter of the resultant fibers was seen to be increased, implying decrease in the pore-size of the fibers up to 1.4 nm. Surface morphology has been checked via Scanning Electron Microscope (SEM) images. Crystalline nature has been analyzed by X-ray Crystallography. Using the Bruanauer-Emmett-Teller (BET) test, surface area and porosity has been checked for the suitable application. The synthesized TiO2/PVP nanofibers have tremendous practical potentials in filtration and environmental remediation applications.

Publisher

MDPI AG

Reference38 articles.

1. Statement on the Second Meeting of the International Health Regulations (2005) Emergency Committee Regarding the Outbreak of Novel Coronavirus (2019-nCoV),2020

2. China coronavirus: how many papers have been published?

3. WHO Coronavirus (COVID-19) DashboardCovid19.who.int

4. Smart textiles and wearable technologies – opportunities offered in the fight against pandemics in relation to current COVID-19 state

5. Personalized Reusable Face Masks with Smart Nano‐Assisted Destruction of Pathogens for COVID‐19: A Visionary Road

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3