Applying Machine Learning to DEM Raster Images

Author:

Alzaghoul EsraORCID,Al-Zoubi Mohammad Belal,Obiedat RubaORCID,Alzaghoul Fawaz

Abstract

Geospatial data analysis can be improved by using data-driven algorithms and techniques from the machine learning field. The aim of our research is to discover interrelationships among topographical data to support the decision-making process. In this paper, we extracted topographical geospatial data from digital elevation model (DEM) raster images, and we discovered hidden patterns among this data based on the K-means clustering algorithm, to uncover relationships and find clusters of elevation values for the area of Jordan. We introduce a method for querying and clustering geospatial data and we built an interactive map accordingly. The method discovers hidden patterns and uncovers relationships in given large datasets. We demonstrate the applicability of the method using the Jordan map and we report on geospatial data analysis and retrieval improvements. The results show that the optimal decision is in favor of four clusters (classes). The first class includes the high elevation values, the second class includes the very low elevation values, the third class includes the medium-high elevation values, and the fourth class includes the very high elevation values.

Publisher

MDPI AG

Reference34 articles.

1. ASTER DEM performance

2. Terrain Models: A Tool for Natural Hazard Mapping;Toppe,1987

3. DEM Manipulation and 3-D Terrain Visualization: Techniques Used by the U.S. National Park Service

4. Geographic Information Systems: An Introduction;Bernhardsen,2002

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3