Recent Advancement of Data-Driven Models in Wireless Sensor Networks: A Survey

Author:

Sahar GulORCID,Bakar Kamalrulnizam Abu,Rahim SabitORCID,Khani Naveed Ali Khan Kaim,Bibi Tehmina

Abstract

Wireless sensor networks (WSNs) are considered producers of large amounts of rich data. Four types of data-driven models that correspond with various applications are identified as WSNs: query-driven, event-driven, time-driven, and hybrid-driven. The aim of the classification of data-driven models is to get real-time applications of specific data. Many challenges occur during data collection. Therefore, the main objective of these data-driven models is to save the WSN’s energy for processing and functioning during the data collection of any application. In this survey article, the recent advancement of data-driven models and application types for WSNs is presented in detail. Each type of WSN is elaborated with the help of its routing protocols, related applications, and issues. Furthermore, each data model is described in detail according to current studies. The open issues of each data model are highlighted with their challenges in order to encourage and give directions for further recommendation.

Publisher

MDPI AG

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Estimation of Aircraft Gross Weight Based on BP Neural Network;Proceedings of the 3rd International Conference on Computer, Artificial Intelligence and Control Engineering;2024-01-26

2. Comparative Analysis of Time Series Forecasting Methods in Workforce Planning using Predictive Analytics;2024 International Conference on Intelligent and Innovative Technologies in Computing, Electrical and Electronics (IITCEE);2024-01-24

3. Geo-Smart City Applications;Earth and Environmental Sciences Library;2024

4. Energy Consumption Reduction in Wireless Sensor Network-Based Water Pipeline Monitoring Systems via Energy Conservation Techniques;Future Internet;2023-12-14

5. Enhancing Data Transmission Reliability in Cluttered Environments using Adaptive Wireless Sensors;2023 International Conference on Communication, Security and Artificial Intelligence (ICCSAI);2023-11-23

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3