Author:
Shedden Devon,Atkinson Kristen M.,Cisse Ibrahim,Lutondo Shin,Roundtree Tyshawn,Teixeira Michilena,Shertok Joel,Mehan Michael,Thompson Gregory K.,Gupta Surendra K.,Takacs Gerald A.
Abstract
Since polybenzimidazole (PBI) is often used in the aerospace industry, high-temperature fuel cells, and in redox flow batteries, this research investigated the surface modification of PBI film with 253.7 and 184.9 nm UV photo-oxidation. As observed by X-ray photoelectron spectroscopy (XPS), the oxygen concentration on the surface increased up to a saturation level of 20.2 ± 0.7 at %. With increasing treatment time, there were significant decreases in the concentrations of C-C sp2 and C=N groups and increases in the concentrations of C=O, O-C=O, O-(C=O)-O, C-N, and N-C=O containing moieties due to 253.7 nm photo-oxidation of the aromatic groups of PBI and reaction with ozone produced by 184. 9 nm photo-dissociation of oxygen. Because no significant changes in surface topography were detected by Atomic Force Microscopy (AFM) and SEM measurements, the observed decrease in the water contact angle down to ca. 44°, i.e., increase in hydrophilic, was due to the chemical changes on the surface.
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献