Abstract
Braking conditions are a fundamental issue for the railway and have been a limiting factor in network capacity and timetabling. Leaf fall, especially during the autumn season, creates low-adhesion problems on railways, causing braking problems for trains. To address the requirements of the novel plasma industrial applications towards environmental applications, this work developed and tested a 2.45 GHz microwave atmospheric pressure plasma system for in situ removal of the third body layer deposited onto the railway so as to improve braking. The plasma reactor consisted of a 15 kW, 2.45 GHz magnetron-based microwave generator and a plasma reactor (dielectric tube placed in a TE01 monomode microwave cavity); the atmospheric plasma ignited and sustained at different power levels (2–15 kW) in different gases (nitrogen, argon) as well as mixtures of these gases with reactive molecules (water, oxygen) was jetted directly onto the railhead as to change the conditions for the wheel–rail interface. This technology is hoped to be a game-changer in enabling predictable and optimized braking on the railway network. Challenges encountered during the demonstration phase are discussed. Subsequent work should validate the results on a working railway line during the autumn season.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献