Control Limits for an Adaptive Self-Starting Distribution-Free CUSUM Based on Sequential Ranks

Author:

Lang MichaelORCID

Abstract

Since their introduction in 1954, cumulative sum (CUSUM) control charts have seen a widespread use beyond the conventional realm of statistical process control (SPC). While off-the-shelf implementations aimed at practitioners are available, their successful use is often hampered by inherent limitations which make them not easily reconcilable with real-world scenarios. Challenges commonly arise regarding a lack of robustness due to underlying parametric assumptions or requiring the availability of large representative training datasets. We evaluate an adaptive distribution-free CUSUM based on sequential ranks which is self-starting and provide detailed pseudo-code of a simple, yet effective calibration algorithm. The main contribution of this paper is in providing a set of ready-to-use tables of control limits suitable to a wide variety of applications where a departure from the underlying sampling distribution to a stochastically larger distribution is of interest. Performance of the proposed tabularized control limits is assessed and compared to competing approaches through extensive simulation experiments. The proposed control limits are shown to yield significantly increased agility (reduced detection delay) while maintaining good overall robustness.

Publisher

MDPI AG

Reference28 articles.

1. Statistical Quality Control: A Modern Introduction;Montgomery,2012

2. Introduction to Statistical Process Control;Qiu,2013

3. Cumulative Sum Charts and Charting for Quality Improvement;Hawkins,1998

4. Economic Control of Quality of Manufactured Product;Shewhart,1931

5. CONTINUOUS INSPECTION SCHEMES

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Distribution-Free CUSUM-Type Control Charts for Monitoring Industrial Processes: An Overview;International Journal of Mathematical, Engineering and Management Sciences;2021-07-18

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3