Applying Semantics to Reduce the Time to Analytics within Complex Heterogeneous Infrastructures

Author:

Pomp André,Paulus Alexander,Kirmse Andreas,Kraus VadimORCID,Meisen Tobias

Abstract

In today’s age of modern information technology, large amounts of data are generated every second to enable subsequent data aggregation and analysis. However, the IT infrastructures that have been set up over the last few decades and which should now be used for this purpose are very heterogeneous and complex. As a result, tasks for analyzing data, such as collecting, searching, understanding and processing data, become very time-consuming. This makes it difficult to realize visions, such as the Internet of Production, which pursues the goal of guaranteeing the availability of real-time information at any time and place in an industrial setting. To reduce the time to analytics in such scenarios, we present a data ingestion, integration and processing approach consisting of a flexible and configurable data ingestion pipeline as well as a semantic data platform named ESKAPE. The ingestion pipeline provides an abstraction to all tasks related to data acquisition. The main goal is, therefore, the controllable access to data and meta information contained in machines and other systems on the shop floor. Additionally, it provides the possibility to forward the collected data to a configurable endpoint, such as a data lake. ESKAPE acts as one of those endpoints enabling semantic data integration and processing. By annotating data sets with semantic models originating from the Semantic Web, data analysts are able to understand, process and discover these data sets more efficiently. ESKAPE features a three-layered information storage architecture consisting of a data layer for storing integrated raw data sets, a layer containing user-defined semantic models to describe the contextual knowledge necessary to interpret the stored data and a top layer formed by a continuously evolving knowledge graph, combining semantic information from all present semantic models. Based on this storage system, ESKAPE enables the flexible annotation as well as efficient search and processing of data sources without losing the ability of analyzing and querying the underlying raw data with analytic tools. We present and discuss our approach and its benefits and limitations based on a real-world industrial use case.

Publisher

MDPI AG

Reference40 articles.

1. Digital Connected Productionhttps://www.rwth-campus.com/wp-content/uploads/2015/01/Broschuere-Cluster-Productionstechnik-20170508-web.pdf

2. In Bloomberg Professional Services 2016https://www.bloomberg.com/professional/blog/time-to-analytics-the-new-metric-for-data-management/

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3