Application of an Emergency Alarm System for Physiological Sensors Utilizing Smart Devices

Author:

Kang James,Larkin Henry

Abstract

Since innovative smart devices and body sensors including wearables have become prevalent with health informatics such as in Mobile Health (mHealth), we proposed to infer sensed data in sensor nodes to reduce the battery power consumption and bandwidth usage in wireless body area networks. It is critical to raise an alarm when the user is in an urgent situation, which can be done by analysing the sensed data against the user’s activity status utilizing accelerometer sensors. However, when the activity changes frequently, there may be an increase in false alarms, which increases sensing and transferring of data, resulting in higher resource consumption. To reduce and mitigate the problem, we propose verifying the alarm and sending a user feedback using a smart device or smartwatch application so that a user can respond to whether the alarm is true or false. This paper presents a user-feedback system for use in activity recognition to mitigate and improve possible false alarm situations, which will consequently result in helping sensors to reduce the frequency of transactions and transmissions in wireless body area networks. As a contribution, the alarm determination can not only improve the accuracy of the alarm by utilising mobile app screen and speech recognition but can also reduce possible false alarms. It may also communicate with their physician in real-time who can assess the status with health data provided by the sensors.

Publisher

MDPI AG

Reference31 articles.

1. Data Processing of Physiological Sensor Data and Alarm Determination Utilising Activity Recognition;Kang;Int. J. Inf. Commun. Technol. Appl.,2016

2. Using Machine Learning for Real-Time Activity Recognition and Estimation of Energy Expenditure;Munguia Tapia,2008

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3