Change Detection for Forest Ecosystems Using Remote Sensing Images with Siamese Attention U-Net

Author:

Hewarathna Ashen Iranga1,Hamlin Luke2,Charles Joseph3,Vigneshwaran Palanisamy1ORCID,George Romiyal4ORCID,Thuseethan Selvarajah2,Wimalasooriya Chathrie5,Shanmugam Bharanidharan2ORCID

Affiliation:

1. Faculty of Computing, Sabaragamuwa University of Sri Lanka, Belihuloya 70140, Sri Lanka

2. Energy and Resource Institute, Faculty of Science and Technology, Charles Darwin University, Darwin, NT 0810, Australia

3. Faculty of Engineering, Friedrich-Alexander-University (FAU), 91054 Erlangen, Germany

4. Department of Computer Engineering, University of Peradeniya, Peradeniya 20400, Sri Lanka

5. School of Computing, University of Otago, Dunedin 9016, New Zealand

Abstract

Forest ecosystems are critical components of Earth’s biodiversity and play vital roles in climate regulation and carbon sequestration. They face increasing threats from deforestation, wildfires, and other anthropogenic activities. Timely detection and monitoring of changes in forest landscapes pose significant challenges for government agencies. To address these challenges, we propose a novel pipeline by refining the U-Net design, including employing two different schemata of early fusion networks and a Siam network architecture capable of processing RGB images specifically designed to identify high-risk areas in forest ecosystems through change detection across different time frames in the same location. It annotates ground truth change maps in such time frames using an encoder–decoder approach with the help of an enhanced feature learning and attention mechanism. Our proposed pipeline, integrated with ResNeSt blocks and SE attention techniques, achieved impressive results in our newly created forest cover change dataset. The evaluation metrics reveal a Dice score of 39.03%, a kappa score of 35.13%, an F1-score of 42.84%, and an overall accuracy of 94.37%. Notably, our approach significantly outperformed multitasking model approaches in the ONERA dataset, boasting a precision of 53.32%, a Dice score of 59.97%, and an overall accuracy of 97.82%. Furthermore, it surpassed multitasking models in the HRSCD dataset, even without utilizing land cover maps, achieving a Dice score of 44.62%, a kappa score of 11.97%, and an overall accuracy of 98.44%. Although the proposed model had a lower F1-score than other methods, other performance metrics highlight its effectiveness in timely detection and forest landscape monitoring, advancing deep learning techniques in this field.

Funder

Charles Darwin University

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3