Machine Learning Approaches to Predict Major Adverse Cardiovascular Events in Atrial Fibrillation

Author:

Moltó-Balado Pedro12ORCID,Reverté-Villarroya Silvia3ORCID,Alonso-Barberán Victor4,Monclús-Arasa Cinta1,Balado-Albiol Maria Teresa5,Clua-Queralt Josep6,Clua-Espuny Josep-Lluis67ORCID

Affiliation:

1. Primary Health-Care Center Tortosa Oest, Institut Català de la Salut, Primary Care Service (SAP) Terres de l’Ebre, CAP Baix Ebre Avda de Colom, 16-20, 43500 Tortosa, Spain

2. Biomedicine Doctoral Programme, Universitat Rovira I Virgili, 43500 Tortosa, Spain

3. Nursing Department, Advanced Nursing Research Group at Rovira I Virgili University, Biomedicine Doctoral Programme Campus Terres de l’Ebre, Av. De Remolins, 13, 43500 Tortosa, Spain

4. Institut d’Educació Secundària El Caminàs, C/Pintor Soler Blasco, 3, Conselleria d’Educació, 12003 Castellón, Spain

5. Primary Health-Care Center CS Borriana I, Conselleria de Sanitat, Avinguda Nules, 31, 12530 Borriana, Spain

6. Primary Health-Care Center EAP Tortosa Est, Institut Català de la Salut, CAP El Temple Plaça Carrilet, s/n, 43500 Tortosa, Spain

7. Research Support Unit Terres de l’Ebre, Institut Universitari d’Investigació en Atenció Primària Jordi Gol (IDIAPJGol) (Barcelona), Ebrictus Research Group, Terres de l’Ebre, 43500 Tortosa, Spain

Abstract

The increasing prevalence of atrial fibrillation (AF) and its association with Major Adverse Cardiovascular Events (MACE) presents challenges in early identification and treatment. Although existing risk factors, biomarkers, genetic variants, and imaging parameters predict MACE, emerging factors may be more decisive. Artificial intelligence and machine learning techniques (ML) offer a promising avenue for more effective AF evolution prediction. Five ML models were developed to obtain predictors of MACE in AF patients. Two-thirds of the data were used for training, employing diverse approaches and optimizing to minimize prediction errors, while the remaining third was reserved for testing and validation. AdaBoost emerged as the top-performing model (accuracy: 0.9999; recall: 1; F1 score: 0.9997). Noteworthy features influencing predictions included the Charlson Comorbidity Index (CCI), diabetes mellitus, cancer, the Wells scale, and CHA2DS2-VASc, with specific associations identified. Elevated MACE risk was observed, with a CCI score exceeding 2.67 ± 1.31 (p < 0.001), CHA2DS2-VASc score of 4.62 ± 1.02 (p < 0.001), and an intermediate-risk Wells scale classification. Overall, the AdaBoost ML offers an alternative predictive approach to facilitate the early identification of MACE risk in the assessment of patients with AF.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3