Abstract
In this paper, a modular multi-input, single output DC/DC converter is proposed to enhance the energy management of a fast-charging station for electric vehicles (EVs). The proposed bidirectional converter can work in different modes of operation with fewer components and a modular design to extend the input power sources and increase the charging power rate. The converter has several merits compared to the conventional converters, such as centralizing the control, reducing power devices, and reducing power conversion stages. By using MATLAB/Simulink, the converter was tested in many operation modes and was used to charge a Nissan Leaf EV’s battery (350 V, 60 Ah) from hybrid sources simultaneously and individually in power up to (17 kW). In addition, it was tested on a hardware scale at a low power rate (100 W) for the validation of the simulation work and the topology concept. In addition, its different losses and efficiency were calculated during the different operation modes.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Charging Systems/Techniques of Electric Vehicle:;Solar Energy and Sustainable Development Journal;2024-06-08