1. Hundepool, A., Domingo-Ferrer, J., Franconi, L., Giessing, S., Nordholt, E.S., Spicer, K., and de Wolf, P.-P. (2012). Statistical Disclosure Control, Wiley.
2. Torra, V. (2017). Data Privacy: Foundations, New Developments and the Big Data Challenge, Springer.
3. Abowd, J., Ashmead, R., Cumings-Menon, R., Garfinkel, S., Kifer, D., Leclerc, P., Sexton, W., Simpson, A., Task, C., and Zhuravlev, P. (2021, January 6–14). An Uncertainty Principle Is a Price of Privacy-Preserving Microdata. Proceedings of the 35th Conference on Neural Information Processing Systems, Virtual.
4. Locally differentially-private randomized response for discrete distribution learning;Pastore;J. Mach. Learn. Res.,2021
5. Reimherr, M., and Awan, J. (2019, January 8–14). Elliptical Perturbations for Differential Privacy. Proceedings of the NeurIPS 2019, Vancouver, BC, Canada.