An Efficient Smart Pharmaceutical Packaging Technology Framework to Assess the Quality of Returned Medication through Non-Intrusively Recording Storage Conditions after Dispensation

Author:

Gerrans James1,Donyai Parastou2,Finlay Katherine3ORCID,Sherratt R. Simon1ORCID

Affiliation:

1. School of Biological Sciences, University of Reading, Reading RG6 6AY, UK

2. Department of Pharmacy, Kings College London, London SE1 9NH, UK

3. Department of Psychology, University of Reading, Reading RG6 6AH, UK

Abstract

Medicine waste is a global issue, with economic, environmental, and social consequences that are only predicted to worsen. A structured review of the literature on medicine reuse revealed that there is a lack of technological applications addressing the key concerns raised by pharmaceutical stakeholders on the safety and feasibility of redispensing medication. A basis and guidelines for solutions aiming at enabling medicine reuse were devised by exploring a conceptual model of a Circular Pharmaceutical Supply Chain (CPSC), discussing concerns raised within the literature and identifying methods to influence the public and pharmaceutical companies. SPaRAS, a novel system to validate the storage conditions and streamline the assessment of returned medicines, is proposed. The Smart Packaging System (SPS) will record the storage conditions of medication while in patient care. The companion Returns Assessment System (RAS) will efficiently communicate with the SPS through RFID, configure the sensors within the SPS to the needs of its assigned medicine and assess the returns against tailored eligibility criteria. The increased safety and efficiency provided by SPaRAS addresses the concerns of large pharmaceutical companies and the public, offering a method to reuse previously owned medication and reduce the effects of unnecessary medicine waste.

Funder

University of Reading Regional Bursary

Publisher

MDPI AG

Subject

Computer Science (miscellaneous)

Reference83 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Barriers to blockchain-enabled drug recycling: A TISM-MICMAC approach;Sustainable Chemistry and Pharmacy;2024-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3