Advancements in Doping Strategies for Enhanced Photocatalysts and Adsorbents in Environmental Remediation

Author:

Sen Pramita1ORCID,Bhattacharya Praneel1ORCID,Mukherjee Gargi1,Ganguly Jumasri1,Marik Berochan1ORCID,Thapliyal Devyani2ORCID,Verma Sarojini2,Verros George D.3,Chauhan Manvendra Singh4,Arya Raj Kumar2ORCID

Affiliation:

1. Department of Chemical Engineering, Heritage Institute of Technology Kolkata, Chowbaga Road, Kolkata 700107, India

2. Department of Chemical Engineering, Dr. B.R. Ambedkar National Institute of Technology Jalandhar, Jalandhar 144011, India

3. Laboratory of Polymer and Colors Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece

4. Department of Civil Engineering, University Institute of Engineering and Technology, Babasaheb Bhimrao Ambedkar University (A Central University), VidyaVihar, Raebareli Road, Lucknow 226025, India

Abstract

Environmental pollution poses a pressing global challenge, demanding innovative solutions for effective pollutant removal. Photocatalysts, particularly titanium dioxide (TiO2), are renowned for their catalytic prowess; however, they often require ultraviolet light for activation. Researchers had turned to doping with metals and non-metals to extend their utility into the visible spectrum. While this approach shows promise, it also presents challenges such as material stability and dopant leaching. Co-doping, involving both metals and non-metals, has emerged as a viable strategy to mitigate these limitations. Inthe fieldof adsorbents, carbon-based materials doped with nitrogen are gaining attention for their improved adsorption capabilities and CO2/N2 selectivity. Nitrogen doping enhances surface area and fosters interactions between acidic CO2 molecules and basic nitrogen functionalities. The optimal combination of an ultramicroporous surface area and specific nitrogen functional groups is key to achievehigh CO2 uptake values and selectivity. The integration of photocatalysis and adsorption processes in doped materials has shown synergistic pollutant removal efficiency. Various synthesis methods, including sol–gel, co-precipitation, and hydrothermal approaches had been employed to create hybrid units of doped photocatalysts and adsorbents. While progress has been made in enhancing the performance of doped materials at the laboratory scale, challenges persist in transitioning these technologies to large-scale industrial applications. Rigorous studies are needed to investigate the impact of doping on material structure and stability, optimize process parameters, and assess performance in real-world industrial reactors. These advancements are promising foraddressing environmental pollution challenges, promoting sustainability, and paving the way for a cleaner and healthier future. This manuscript provides a comprehensive overview of recent developments in doping strategies for photocatalysts and adsorbents, offering insights into the potential of these materials to revolutionize environmental remediation technologies.

Publisher

MDPI AG

Subject

Computer Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3