Effect of PLGA Concentration in Electrospinning Solution on Biocompatibility, Morphology and Mechanical Properties of Nonwoven Scaffolds

Author:

Badaraev Arsalan D.1,Tran Tuan-Hoang1ORCID,Drozd Anastasia G.1ORCID,Plotnikov Evgenii V.12ORCID,Dubinenko Gleb E.1ORCID,Kozelskaya Anna I.1ORCID,Rutkowski Sven1ORCID,Tverdokhlebov Sergei I.1ORCID

Affiliation:

1. Weinberg Research Center, School of Nuclear Science & Engineering, National Research Tomsk Polytechnic University, 30 Lenin Avenue, 634050 Tomsk, Russia

2. Mental Health Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Aleutskaya Street 4, 634014 Tomsk, Russia

Abstract

In this work, the effects of weight concentration on the properties of poly(lactide-co-glycolide) polymeric scaffolds prepared by electrospinning are investigated, using four different weight concentrations of poly(lactide-co-glycolide) for the electrospinning solutions (2, 3, 4, 5 wt.%). With increasing concentration of poly(lactide-co-glycolide) in the electrospinning solutions, their viscosity increases significantly. The average fiber diameter of the scaffolds also increases with increasing concentration. Moreover, the tensile strength and maximum elongation at break of the scaffold increase with increasing electrospinning concentration. The prepared scaffolds have hydrophobic properties and their wetting angle does not change with the concentration of the electrospinning solution. All poly(lactide-co-glycolide) scaffolds are non-toxic toward fibroblasts of the cell line 3T3-L1, with the highest numbers of cells observed on the surface of scaffolds prepared from the 2-, 3- and 4-wt.% electrospinning solutions. The results of the analysis of mechanical and biological properties indicate that the poly(lactide-co-glycolide) scaffolds prepared from the 4 wt.% electrospinning solution have optimal properties for future applications in skin tissue engineering. This is due to the fact that the poly(lactide-co-glycolide) scaffolds prepared from the 2 wt.% and 3 wt.% electrospinning solution exhibit low mechanical properties, and 5 wt.% have the lowest porosity values, which might be the cause of their lowest biological properties.

Funder

Ministry of Science and Higher Education of the Russian Federation

Publisher

MDPI AG

Subject

Computer Science (miscellaneous)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3