Development of Low-Cost Wireless Sensing System for Smart Ultra-High Performance Concrete

Author:

Le Huy-Viet,Kim Tae-UkORCID,Khan Suleman,Park Jun-Young,Park Jong-Woong,Kim Seung-EockORCID,Jang YunORCID,Kim Dong-JooORCID

Abstract

This study proposes the development of a wireless sensor system integrated with smart ultra-high performance concrete (UHPC) for sensing and transmitting changes in stress and damage occurrence in real-time. The smart UHPC, which has the self-sensing ability, comprises steel fibers, fine steel slag aggregates (FSSAs), and multiwall carbon nanotubes (MWCNTs) as functional fillers. The proposed wireless sensing system used a low-cost microcontroller unit (MCU) and two-probe resistance sensing circuit to capture change in electrical resistance of self-sensing UHPC due to external stress. For wireless transmission, the developed wireless sensing system used Bluetooth low energy (BLE) beacon for low-power and multi-channel data transmission. For experimental validation of the proposed smart UHPC, two types of specimens for tensile and compression tests were fabricated. In the laboratory test, using a universal testing machine, the change in electrical resistivity was measured and compared with a reference DC resistance meter. The proposed wireless sensing system showed decreased electrical resistance under compressive and tensile load. The fractional change in resistivity (FCR) was monitored at 39.2% under the maximum compressive stress and 12.35% per crack under the maximum compressive stress tension. The electrical resistance changes in both compression and tension showed similar behavior, measured by a DC meter and validated the developed integration of wireless sensing system and smart UHPC.

Funder

National Research Foundation of Korea

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference32 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3