Learning Hierarchical Representations with Spike-and-Slab Inception Network

Author:

Qiao WeizhengORCID,Bi Xiaojun

Abstract

Recently, deep convolutional neural networks (CNN) with inception modules have attracted much attention due to their excellent performances on diverse domains. Nevertheless, the basic CNN can only capture a univariate feature, which is essentially linear. It leads to a weak ability in feature expression, further resulting in insufficient feature mining. In view of this issue, researchers incessantly deepened the network, bringing parameter redundancy and model over-fitting. Hence, whether we can employ this efficient deep neural network architecture to improve CNN and enhance the capacity of image recognition task still remains unknown. In this paper, we introduce spike-and-slab units to the modified inception module, enabling our model to capture dual latent variables and the average and covariance information. This operation further enhances the robustness of our model to variations of image intensity without increasing the model parameters. The results of several tasks demonstrated that dual variable operations can be well-integrated into inception modules, and excellent results have been achieved.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3