Foot Position Recognition Using a Smartphone Inertial Sensor in Patient Transfer

Author:

Kitagawa Kodai1ORCID,Takashima Ryo1,Kurosawa Tadateru1,Wada Chikamune2ORCID

Affiliation:

1. Department of Industrial Systems Engineering, National Institute of Technology, Hachinohe College, 16-1 Uwanotai, Tamonoki, Hachinohe 039-1192, Japan

2. Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, Hibikino 2-4, Wakamatsu-ku, Kitakyushu 808-0135, Japan

Abstract

Caregivers experience lower back pain due to patient transfer. Foot position is an important and adjustable posture for reducing lumbar loads during patient transfer. Specifically, a suitable foot position provides the use of the lower limbs instead of the lumbar region in patient handling. Thus, we have developed a monitoring and feedback system for foot positioning using wearable sensors to instruct suitable foot positions. However, existing measurement methods require multiple specific wearable sensors. In addition, the existing method has not been evaluated in patient transfer, including twisting and lowering. Thus, the objective of this study was to develop and evaluate a measurement method using only a smartphone-installed inertial sensor for foot position during patient transfer, including twisting and lowering. The smartphone attached to the trunk measures the acceleration, angular velocity, and geomagnetic field. The proposed method recognizes anteroposterior and mediolateral foot positions by machine learning using inertial data. The proposed method was tested using simulated patient transfer motions, including horizontal rotation. The results showed that the proposed method could recognize the two foot positions with more than 90% accuracy. These results indicate that the proposed method can be applied to wearable monitoring and feedback systems to prevent lower back pain caused by patient transfer.

Funder

JSPS KAKENHI

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3