Customized Lattice Structures Tailored to Mimic Patients’ Bone Anisotropic Properties and Microarchitecture for Joint Reconstruction Applications

Author:

El-Gizawy Ahmed Sherif12ORCID,Ma Xuewei1,Arnone Joshua C.2,Melaibari Ammar A.34ORCID

Affiliation:

1. Mechanical & Aerospace Engineering, University of Missouri, Columbia, MO 65211, USA

2. Industrial Technology Development and Management (ITECH D&M) LLC, Columbia, MO 65203, USA

3. Mechanical Engineering Department, Faculty of Engineering, King AbdulAziz University, Jeddah 21589, Saudi Arabia

4. Center of Nanotechnology, King AbdulAziz University, Jeddah 21589, Saudi Arabia

Abstract

Existing implants used with Total Knee Arthroplasty (TKA), Total Hip Arthroplasty (THA), and other joint reconstruction treatments, have displayed premature failures and frequent needs for revision surgery in recent years, particularly with young active patients who represent more than 55% of all joint reconstruction patients. Bone cement and stress shielding have been identified as the major reasons for premature joint failures. A breakdown of the cement may happen, and revision surgery may be needed because of the aseptic loosening. The significant mismatch of stiffness properties of patient trabecular bones and metallic implant materials in joint reconstruction surgery results in the stress shielding phenomenon. This could lead to significant bone resorption and increased risk of bone fracture and the aseptic loosening of implants. The present project introduces an approach for development of customized cellular structures to match the mechanical properties and architecture of human trabecular bone. The present work aims at fulfilling the objectives of the introduced approach by exploring new designs of customized lattice structures and texture tailored to mimic closely patients’ bone anisotropic properties and that can incorporate an engineered biological press-fit fixation technique. The effects of various lattice design variables on the mechanical performance of the structure are examined through a systematic experimental plan using the statistical design of experiments technique and analysis of variance method. All tested lattice designs were explored under realistic geometrical, biological, and manufacturing constraints. Of the four design factors examined in this study, strut thickness was found to have the highest percent contribution (41%) regarding the structure stiffness, followed by unit cell type, and cell size. Strut shape was found to have the lowest effect with only 11% contribution. The introduced solution offers lattice structure designs that can be adjusted to match bone stiffness distribution and promote bone ingrowth and hence eliminating the phenomenon of stress shielding while incorporating biological press-fit fixation technique.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3