Abstract
In this article, we propose a multi-label convolution neural network (MLCNN)-aided transmit antenna selection (AS) scheme for end-to-end multiple-input multiple-output (MIMO) Internet of Things (IoT) communication systems in correlated channel conditions. In contrast to the conventional single-label multi-class classification ML schemes, we opt for using the concept of multi-label in the proposed MLCNN-aided transmit AS MIMO IoT system, which may greatly reduce the length of training labels in the case of multi-antenna selection. Additionally, applying multi-label concept may significantly improve the prediction accuracy of the trained MLCNN model under correlated large-scale MIMO channel conditions with less training data. The corresponding simulation results verified that the proposed MLCNN-aided AS scheme may be capable of achieving near-optimal capacity performance in real time, and the performance is relatively insensitive to the effects of imperfect CSI.
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献