Numerical Modelling of the Mulino Delle Vene Aquifer (Northern Italy) as a Tool for Predicting the Hydrogeological System Behavior under Different Recharge Conditions

Author:

Petronici ,Pujades ,Jurado ORCID,Marcaccio ,Borgatti ORCID

Abstract

Water scarcity periods will increase in frequency and magnitude in the near future, especially in Mediterranean regions, and proper groundwater management has been recognized as a key issue to mitigate possible impacts. In this context, numerical models acquire a special relevance to quantify the availability of water resources and predict their behavior under changing climate conditions. This work shows the procedure followed to model a mountainous fractured aquifer located in the northern Apennines (Italy) using an open source code. This aquifer feeds springs with an average discharge of about 96.8 L/s. Even though they are not exploited at the moment, these springs might represent a relevant resource of freshwater for public water supply and are essential for ecosystem sustainment. The main limitation faced to model the aquifer in a realistic way is the lack of data, which hinders the calibration of the model. A nonconventional procedure was followed to obtain information on the hydraulic parameters. The hydraulic conductivity is computed from a steady-state calibration for which a limited number of groundwater head observations are available, whilst information concerning the storage coefficient is obtained analytically from the spring discharge recession curve. Finally, the model is used for predicting the system behavior under different groundwater recharge scenarios. Numerical simulations and analytical approximations reveal that the studied aquifer can provide fresh water under different groundwater recharge conditions and has the capacity to smooth the effects of short drought periods, representing an option for water management strategies in the region.

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Reference77 articles.

1. Will groundwater ease freshwater stress under climate change?

2. Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change,2007

3. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change,2014

4. Ground water and climate change

5. Climate Change and Groundwater: A Short Review;Dragoni,2008

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3