Abstract
An efficient algorithm is proposed to find an approximate solution via the wavelet collocation method for the fractional Fredholm integro-differential equations (FFIDEs). To do this, we reduce the desired equation to an equivalent linear or nonlinear weakly singular Volterra–Fredholm integral equation. In order to solve this integral equation, after a brief introduction of Müntz–Legendre wavelets, and representing the fractional integral operator as a matrix, we apply the wavelet collocation method to obtain a system of nonlinear or linear algebraic equations. An a posteriori error estimate for the method is investigated. The numerical results confirm our theoretical analysis, and comparing the method with existing ones demonstrates its ability and accuracy.
Subject
General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献