Utilization of Improved Machine Learning Method Based on Artificial Hummingbird Algorithm to Predict the Tribological Behavior of Cu-Al2O3 Nanocomposites Synthesized by In Situ Method

Author:

Sadoun Ayman M.,Najjar Ismail R.,Alsoruji Ghazi S.,Abd-Elwahed M. S.ORCID,Elaziz Mohamed AbdORCID,Fathy AdelORCID

Abstract

This paper presents a machine learning model to predict the effect of Al2O3 nanoparticles content on the wear rates in Cu-Al2O3 nanocomposite prepared using in situ chemical technique. The model developed is a modification of the random vector functional link (RVFL) algorithm using artificial hummingbird algorithm (AHA). The objective of using AHA is used to find the optimal configuration of RVFL to enhance the prediction of Al2O3 nanoparticles. The preparation of the composite was done using aluminum nitrate that was added to a solution containing scattered copper nitrate. After that, the powders of CuO and Al2O3 were obtained, and the leftover liquid was removed using a thermal treatment at 850 °C for 1 h. The powders were consolidated using compaction and sintering processes. The microhardness of the nanocomposite with 12.5% Al2O3 content is 2.03-fold times larger than the pure copper, while the wear rate of the same composite is reduced, reaching 55% lower than pure copper. These improved properties are attributed to the presence of Al2O3 nanoparticles and their homogenized distributions inside the matrix. The developed RVFl-AHA model was able to predict the wear rates of all the prepared composites at different wear load and speed, with very good accuracy, reaching nearly 100% and 99.5% using training and testing, respectively, in terms of coefficient of determination R2.

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3