Mining Campus Big Data: Prediction of Career Choice Using Interpretable Machine Learning Method

Author:

Wang Yuan,Yang Liping,Wu Jun,Song Zisheng,Shi LiORCID

Abstract

The issue of students’ career choice is the common concern of students themselves, parents, and educators. However, students’ behavioral data have not been thoroughly studied for understanding their career choice. In this study, we used eXtreme Gradient Boosting (XGBoost), a machine learning (ML) technique, to predict the career choice of college students using a real-world dataset collected in a specific college. Specifically, the data include information on the education and career choice of 18,000 graduates during their college years. In addition, SHAP (Shapley Additive exPlanation) was employed to interpret the results and analyze the importance of individual features. The results show that XGBoost can predict students’ career choice robustly with a precision, recall rate, and an F1 value of 89.1%, 85.4%, and 0.872, respectively. Furthermore, the interaction of features among four different choices of students (i.e., choose to study in China, choose to work, difficulty in finding a job, and choose to study aboard) were also explored. Several educational features, especially differences in grade point average (GPA) during their college studying, are found to have relatively larger impact on the final choice of career. These results can be of help in the planning, design, and implementation of higher educational institutions’ (HEIs) events.

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3