Influence Maximization Based on Snapshot Prediction in Dynamic Online Social Networks

Author:

Zhang Lin,Li Kan

Abstract

With the vigorous development of the mobile Internet, online social networks have greatly changed the way of life of human beings. As an important branch of online social network research, influence maximization refers to finding K nodes in the network to form the most influential seed set, which is an abstract model of viral marketing. Most of the current research is based on static network structures, ignoring the important feature of network structures changing with time, which discounts the effect of seed nodes in dynamic online social networks. To address this problem in dynamic online social networks, we propose a novel framework called Influence Maximization based on Prediction and Replacement (IMPR). This framework first uses historical network snapshot information to predict the upcoming network snapshot and then mines seed nodes suitable for the dynamic network based on the predicted result. To improve the computational efficiency, the framework also adopts a fast replacement algorithm to solve the seed nodes between different snapshots. The scheme we adopted exhibits four advantages. First, we extended the classic influence maximization problem to dynamic online social networks and give a formal definition of the problem. Second, a new framework was proposed for this problem and a proof of the solution is given in theory. Third, other classical algorithms for influence maximization can be embedded into our framework to improve accuracy. More importantly, to reveal the performance of the scheme, a series of experiments based on different settings on real dynamic online social network datasets were carried out, and the experimental results are very promising.

Funder

Beijing Natural Science Foundation

National Key R & D Program of China

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3