Abstract
In 2021, Chang et al. proposed an authenticated semi-quantum key-distribution (ASQKD) protocol using single photons and an authenticated channel. However, an eavesdropper can launch a reflective attack to forge the receiver’s identity without being detected. In addition, Chang et al.’s ASQKD protocol assumes an authenticated classical channel between the sender and the receiver. It is considered illogical to have an authenticated channel in the ASQKD protocol. If these security issues are not addressed, the ASQKD protocol will fail to deliver the secret key. Therefore, this study proposes an efficient and secure ASQKD protocol to circumvent these problems using only single photons. Security analysis proves that the proposed ASQKD protocol can effectively avoid reflecting attacks, collective attacks, and other typical attacks. Compared with the existing ASQKD protocols, this study has the following advantages: based on a single photon, it demands less advanced quantum devices, the communication efficiency is higher than most protocols, it reduces the length of the required pre-shared keys, endures reflecting attacks, collective attacks, and there is no need for the classical channel.
Funder
Ministry of Science and Technology, Taiwan
China Medical University, Taiwan
Subject
General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献