An Improved Wild Horse Optimizer for Solving Optimization Problems

Author:

Zheng RongORCID,Hussien Abdelazim G.ORCID,Jia He-MingORCID,Abualigah LaithORCID,Wang Shuang,Wu Di

Abstract

Wild horse optimizer (WHO) is a recently proposed metaheuristic algorithm that simulates the social behavior of wild horses in nature. Although WHO shows competitive performance compared to some algorithms, it suffers from low exploitation capability and stagnation in local optima. This paper presents an improved wild horse optimizer (IWHO), which incorporates three improvements to enhance optimizing capability. The main innovation of this paper is to put forward the random running strategy (RRS) and the competition for waterhole mechanism (CWHM). The random running strategy is employed to balance exploration and exploitation, and the competition for waterhole mechanism is proposed to boost exploitation behavior. Moreover, the dynamic inertia weight strategy (DIWS) is utilized to optimize the global solution. The proposed IWHO is evaluated using twenty-three classical benchmark functions, ten CEC 2021 test functions, and five real-world optimization problems. High-dimensional cases (D = 200, 500, 1000) are also tested. Comparing nine well-known algorithms, the experimental results of test functions demonstrate that the IWHO is very competitive in terms of convergence speed, precision, accuracy, and stability. Further, the practical capability of the proposed method is verified by the results of engineering design problems.

Funder

Sanming University introduces high-level talents to start scientific research funding support project

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Reference78 articles.

1. Swarm Intelligence: Principles, Advances, and Applications;Hassanien,2018

2. New binary whale optimization algorithm for discrete optimization problems

3. Engineering Optimization: An Introduction with Metaheuristic Applications;Yang,2010

4. A literature survey of benchmark functions for global optimization problems;Jamil;Int. J. Math. Model. Numer. Optim.,2013

5. An Efficient Cancer Classification Model Using Microarray and High-Dimensional Data

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3