Abstract
The theory of quaternions has gained a firm ground in recent times and is being widely explored, with the field of signal and image processing being no exception. However, many important aspects of quaternionic signals are yet to be explored, particularly the formulation of Generalized Sampling Expansions (GSE). In the present article, our aim is to formulate the GSE in the realm of a one-dimensional quaternion Fourier transform. We have designed quaternion Fourier filters to reconstruct the signal, using the signal and its derivative. Since derivatives contain information about the edges and curves appearing in images, therefore, such a sampling formula is of substantial importance for image processing, particularly in image super-resolution procedures. Moreover, the presented sampling expansion can be applied in the field of image enhancement, color image processing, image restoration and compression and filtering, etc. Finally, an illustrative example is presented to demonstrate the efficacy of the proposed technique with vivid simulations in MATLAB.
Subject
General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献