Experimental Investigations of the Ignitability of Several Coal Dust Qualities

Author:

Youssefi ReyhaneORCID,Segers Tom,Norman Frederik,Maier Jörg,Scheffknecht GünterORCID

Abstract

The ignition characteristics of coal dust is of high importance for the flame stability in coal-fired power plants. We investigate the ignitability of six lignite dust qualities and one hard coal using dust explosion tests and an ignitability characteristic number. The paper aims to identify the degree of impact of the properties of coals, such as the moisture content, the ash content etc., on the ignition characteristics and ultimately to compare the identified relevant ignition parameters to the ignition performance of the dust qualities in an industrially relevant environment. The minimum cloud ignition temperature (MCIT), the maximum rate of pressure rise ((dp/dt)max), the maximum explosion pressure (pmax), the deflagration index (Kst-value) and the modified ignitability characteristic number (ZWZmod.) were determined and were attributed to the moisture content, the ash content and the median particle size. The MCIT was largely influenced by the volatile content, whereas the variations of moisture and ash contents within the range of 10% to 20% did not have a significant impact on the MCIT. The maximum explosion pressure did not differ considerably and stayed in a narrow range among the tested dust qualities. The deflagration index showed a higher sensitivity to the dust properties. The deflagration index and the modified ignitability characteristics number dropped as the moisture content increased and the volatile content reduced. The Kst and ZWZmod. values showed the highest susceptibility to the coal dust properties. Hence, they were used as representative parameters for further comparison with the ignition performance of coal dust in a pilot-scale testing. The results showed that both parameters predicted the ignition performance relatively well and can be used as indicators for the prediction of the ignition performance.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference25 articles.

1. Plasma preparation of coal to combustion in power boilers

2. Erfolgreiche Installation und Inbetriebnahme einer Zünd- und Stützfeuerung mittels Trockenbraunkohlebrenner mit Plasmazündung;Heimann;VGB PowerTech,2016

3. Kohlecharakterisierung und Kohleverbrennung;Zelkowski,2004

4. A correlation between composition and explosibility index for coal dust

5. Improvement in the correlation between the composition index and the explosibility index for coal dust

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3