Coupled Basin and Hydro-Mechanical Modeling of Gas Chimney Formation: The SW Barents Sea

Author:

Peshkov Georgy A.ORCID,Khakimova Lyudmila A.ORCID,Grishko Elena V.ORCID,Wangen Magnus,Yarushina Viktoria M.ORCID

Abstract

Gas chimneys are one of the most intriguing manifestations of the focused fluid flows in sedimentary basins. To predict natural and human-induced fluid leakage, it is essential to understand the mechanism of how fluid flow localizes into conductive chimneys and the chimney dynamics. This work predicts conditions and parameters for chimney formation in two fields in the SW Barents Sea, the Tornerose field and the Snøhvit field in the Hammerfest Basin. The work is based on two types of models, basin modeling and hydro-mechanical modeling of chimney formation. Multi-layer basin models were used to produce the initial conditions for the hydro-mechanical modeling of the relatively fast chimneys propagation process. Using hydro-mechanical models, we determined the thermal, structural, and petrophysical features of the gas chimney formation for the Tornerose field and the Snøhvit field. Our hydro-mechanical model treats the propagation of chimneys through lithological boundaries with strong contrasts. The model reproduces chimneys identified by seismic imaging without pre-defining their locations or geometry. The chimney locations were determined by the steepness of the interface between the reservoir and the caprock, the reservoir thickness, and the compaction length of the strata. We demonstrate that chimneys are highly-permeable leakage pathways. The width and propagation speed of a single chimney strongly depends on the viscosity and permeability of the rock. For the chimneys of the Snøhvit field, the predicted time of formation is about 13 to 40 years for an about 2 km high chimney.

Funder

Russian Fund for Basic Research

Research Council of Norway

Ministry of Science and Higher Education of the Russian Federation

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3