Analysis of Local Exergy Losses in Combustion Systems Using a Hybrid Filtered Eulerian Stochastic Field Coupled with Detailed Chemistry Tabulation: Cases of Flames D and E

Author:

Agrebi Senda,Dreßler LouisORCID,Nicolai Hendrik,Ries FlorianORCID,Nishad KaushalORCID,Sadiki Amsini

Abstract

A second law analysis in combustion systems is performed along with an exergy loss study by quantifying the entropy generation sources using, for the first time, three different approaches: a classical-thermodynamics-based approach, a novel turbulence-based method and a look-up-table-based approach, respectively. The numerical computation is based on a hybrid filtered Eulerian stochastic field (ESF) method coupled with tabulated detailed chemistry according to a Famelet-Generated Manifold (FGM)-based combustion model. In this work, the capability of the three approaches to capture the effect of the Re number on local exergy losses is especially appraised. For this purpose, Sandia flames D and E are selected as application cases. First, the validation of the computed flow and scalar fields is achieved by comparison to available experimental data. For both flames, the flow field results for eight stochastic fields and the associated scalar fields show an excellent agreement. The ESF method reproduces all major features of the flames at a lower numerical cost. Next, the second law analysis carried out with the different approaches for the entropy generation computation provides comparable quantitative results. Using flame D as a reference, for which some results with the thermodynamic-based approach exist in the literature, it turns out that, among the sources of exergy loss, the heat transfer and the chemical reaction emerge notably as the main culprits for entropy production, causing 50% and 35% of it, respectively. This fact-finding increases in Sandia flame E, which features a high Re number compared to Sandia flame D. The computational cost is less once the entropy generation analysis is carried out by using the Large Eddy Simulation (LES) hybrid ESF/FGM approach together with the look-up-table-based or turbulence-based approach.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3